measurements, it is found that the number of unknowns in the problem exceeds the number of points for tem-
perature measurement even for the simplest case z =1. This case applies to the diode.

To reduce the number of unknowns, the experiment may be set up in such a way that gy (1) =qy(r) = 0,
Further, for a sufficiently thick crystal (~ 1 mm), it is possible to disregard the thickness of the heat-libera
tion region 6; and to regard the discrete source as plane. The remaining three unknowns — the output per
unit volume of the distributed sources wy(r), the output per unit volume of the discrete source wj(r), and its
position x; — may be determined by recording the surface-temperature variation of the crystal with time and
the variation with time of the total losses in the crystal. A number of experimental procedures are possible.
The next problem is to determine the thickness 6; of the region in which the heat source acts. Another pos-

. sibility to be investigated is the use of the method outlined in combination with the use of heat-sensitive para-
meters [7] requires further analysis. ’

The method of successive intervals may also be used to obtain an approximate three-dimensional pic-
ture. This involves the use of a diode with a cellular base. The crystal may then be considered as a collec~
tion of independent current tubes, and the temperature variation at several points of the crystal end surfaces
may be determined experimentally. The use of the inverse problem allows the transverse distribution of the
output per unit volume of the discrete sources in the crystal to be approximately determined,
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SOLUTION OF CONJUGATE PROBLEM IN SUCCESSIVE INTERVALS

L. D. Kalinnikov and N. V. Shumakov ' UDC 536.24

The conjugate problem is solved for nonsteady heat transfer through a plane wall with con-
vective heat transfer at the edges.

On the basis of experimental data on the startup conditions of heat transfer [1, 2], the energy equation
for the thermal boundary layer and the heat-conduction equation for the wall are solved jointly. Having obtained
the solution, the variation with time in the temperature of the heat-transfer surfaces and the heat flows in the
course of nonsteady heat transfer may be determined for given parameters.

In formulating the problem it is assumed that the flow of liquid is stable, the flow rate is given, and its
mean velocity over the cross section is known., The liquid-flow temperature is assumed to be constant and
equal to the liquid temperature at the inlet to the heat~transfer section. The liquid is incompressible with
constant thermophysical properties. Energy dissipation due to viscosity and heat conduction of the wall mate-
rial inthe longitudinal direction of liquid flow is neglected. The mean heat-transfer coefficient is referred to
the difference bhetween the temperature of the heat-transfer surface of the wall and the liquid temperature.
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TABLE 1. Coefficients of Eq. (3)

Experi- , |
ment NojMaterial [ Reh Reg ¢ B, 4 (0, 0) ‘ & | B
1 Co 1800 1810 1,4026 432,3 29683 { 2,2546 1169
2 Ag 1815 1790 1,3051 403,3 27697 | 2,2546 ' 1165
3 Co 1800 3360 1,4026 432,3 29683 \ 2,771 | 1766
4 Ag 1815 3320 1,2074 373,1 25620 2,221 1410
5 Co ‘4450 1810 2,785 1160,5 42251 : 2,2546 . 1169
6 Ag 4500 1810 2,44 1020,6 37156 | 2,2546 | 1169
7 Co 7150 1810 4,00 1952,3 § 71076 | 2,2546 ! 1169
8 Ag 7150 1790 3,62 1766,8 ' 64325 | 2,2546 | 1169
9 Co 7150 3360 4,00 1952,3 71076 | 2,771 1766
10 Ag 7150 3320 3,62 1766,8 } 64325 | 2,387 ; I515.
B {

The joint solution of the energy equation for a thermal boundary layer and the heat-conduction equa~
tion for the solid wall will be represented as a combination of independent solutions satisfying boundary
conditions of the fourth kind at the contact plane between the liquid and the solid wall.

In solving the energy equation for a thermal boundary layer, it is assumed that the velocity distribu-
tion in the liquid flow corresponds to the Hagen—Poiseuille law, and the temperature distribution is de-
scribedby acubic parabola. The solution of the energy equation written in integral form [3] determines the
heat flux: ’

. c)an? 1
Gy, = 0.84(t; — 1,,) [(LBRI_/,“] .

Hence the mean heat-transfer coefficient is determined in the form

«= 196 [-(ﬁcg)_f@ ]'”,
rl

or in the form of a dimensionless number

N, — 1.5876 (RedPr, —‘f—)” . 1)

Using this method of solving the energy equation for other velocity and temperature distributions in
the flow leads to analogous solutions that differ in the value of the constant coefficient. A similar solution
has been used [4] to determine the mean value of Nu in the initial thermal region of a plane tube with con-
stant wall temperature. For nonsteady heat transfer it is impossible to predict in advance the form of the
temperature and velocity distribution in the flow and so it is expedient to write Eq. (1) in the general form

d )”3; (@)

Nu=C (RedPr, "
Analysis of the experimental data of [1, 2] shows that, for nonsteady heat transfer at a heated sur-
face, the heat-transfer coefficient in laminar flow changes in proportion to (Pr*)l/3 = (Pr /Pr )1/3, where-
as in transient flow conditions the inverse relation holds: (Pr*)i/ 8 = (Prf/Prw)‘/ 3, On a cooled surface of
the wall, the heat-transfer coefficient remains constant; i.e., Pr* = Prf.

Taking into account the experimental relations, Eq. (2) takes the form

e 1/3
R, = C ( Re,prt2) " )

The solution of the heat-conduction equation in successive intervals with variable step for a piece-
wise-linear approximation of asymmetric boundary conditions of the second kind and arbitrary initial tem-~
perature distribution is given in {5].

The solution of the system of equations consisting of two equations for the temperature of the heat-
transfer surfaces [5] and the two relations in Eq. (3), resolved with respect to the heat fluxes (taken, re-
spectively, for the two heat-transfer surfaces of the wall), is as follows:

{ ) '
{(0, Fo,)—= i[l +- B, J\—- A (0, mh)] g* (0, Fo,)

. A’Ul
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— B, A(l, w,)g*(1, Fo,) 4 B,A(l, o),

A

w

- {B,Bz }f; [42(0, @) — A2(1, ©)]+ B,A(, m,o} 4, Pr*'”} (4)

w

Yw
14

° -1
X {—7}2 - B,A(0, @) {B,A o, mh)+131132—;—L [42(0, o) — A2(1, @) ”Pr*w] ,

i(1, Fo,) = {q*(l. Fo,) + B,A (0, @), = BXA(I', ,) I,
[ 11
—£(0, Fop)] Pr*‘/3}[—ARi -+ B,A(0, w,,)_i ) )

where

7*(0, Fo,) = iR'”—L(O, Fo,) - q(0, 0)E (0, Fo,)

k—1 k—1
—g(1,00E(1,Fo)+ ¥ (0, Foy I (0, Fo}) — Y q(1, Fo) I'(1, Fo),

g*(1, Fo,) = —}1'-?‘”— L(1, Fo,) +¢(0, 0)E(1, Fo,) —q(1, 0)E(0, Fo,)

k—1 k—1
“ X940, Fo) I'(1, Fo) — ¥ 41, Fo)) I (0, Foj),

=1 =1

[ Rey \1i3 - ., [Res, Pry, \1/3
B, = C)y, (Wg'_) , By=a, =Cly, ( 4, Pry ) .
! )

The functions A, E, and I are defined and tabulated in [5].

Having solved the conjugate problem in Egs. (4) and (5) it is possible to determine the temperature
of the heat-transfer surfaces for given values of C;, C,, t., try, t;, R, and Aw in successive intervals in
the course of nonsteady heat transfer. Simultaneously, the heat fluxes q(0, Fok) and q{1, Fog) and the
heat-transfer coefficient {0, Foi) at the corresponding moment of time are determined. In the first inter-
val, t(0, Fo,) is first determined from the value of Pry, at the initial temperature t(0, 0). From the value
of t(0, Fo,) obtained, a more accurate value of Pry, is found and iterative recalculation of t(0, Fo,) is begun.
The last value of Pry in the first interval is the initial value for the calculation in the second interval and
so on until the final moment of time.

It is easy to obtain the solution of the conjugate problem in the special case when the temperature of
one of the heat-transfer surfaces is known or when one of the sides of the wall is heat insulated.

The solution of the conjugate problem has been used to calculate the variation of the temperatures of
the heat~transfer surfaces t(0, Fo) and t(1, Fo), the heat fluxes q(0, Fo) and q(1, Fo), and the heat-transfer
coefficients o (0, Fo) and (1, Fo) in startup conditions of heat-transfer for two wall materials. The wall
parameters adopted are as follows: t(0, 0) = 25°C, R =0.05 m, [ =0,015 m, Ay(Co)} = 71,176 W/m-°C, Aw
(Ag) =418.68 W/m-°C, (cp)pg =4024.3 kJ/m3-°C, (cp)py = 2461.8 kJ/m3- °C; the corresponding liquid-flow
parameters are: t;, = 75°C, tr, =25°C, dy =0.0347 m, d; =0.0344 m, Aep = 0.6647 W/m-°C, A ¢ =0.6065
W/m.°C, Pr‘ll/f =1.332, Px;% =1.830, where the subscripts h and ¢ denote hot and cold flows, réspectively.

/

c
Values of the constant coefficients in Eq. (3) calculated from the experimental data are shown in
Table 1.

Comparison of experimental and calculated results for the temperatures of the heat-transfer surfaces
and the heat fluxes in the course of nonsteady heat transfer shows that in all the experiments the maximum
discrepancy between experiment and calculation does not exceed 3~4%.

Calculated values of the heat-transfer coefficient as a function of the temperature head o (0, #) and
a(l, ¥) are shown in Fig. 1; the continuous lines show data for the cobalt wall and the dashed lines data for
silver.
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Fig. 1. Dependence of heat-transfer coefficient on temperature head (calculated results): the numbers
on the curves refer to the experiment No. a, W/m?.°C; &, °C.

Fig. 2. Dependence of reduced heat-transfer coefficient on surface temperature: I) transient conditions,
(Pry/Pry)!/3; Nu, = C; ReqPr*-d/1)!/3; Pr+ = Pr;/Pry; 1) laminar flow, (Pry,/Pry)/% Pr* = Pr./Pr i
Pr; corresponds to t; = 25°C; 1) Co; 2) Ag.

~ The variation in C, as a function of Rep for a given wall material is in good agreement with the linear
dependence C; = C; + kywRep, where C; = 0.55, ky(Co) =0.49-10~%, Ky, (Ag) = 0.4242-107%. The slope coeffi~
cient varies in proportion to the cube root of the bulk specific heat of the wall material.

Experimental results for startup conditions of nonsteady heat transfer, generalized with respect to
the variation in the reduced heat-transfer coefficient (the ratio of ITI_uFO to the initial value ﬂo) , are shown
in Fig. 2 as a function of the temperature of the heat-transfer surface: for laminar flow, A = (Prw/ Pro)‘/ 3
for transient flow, A = (Pr,/Pry)'/?. Here Pr, corresponds to the initial temperature and Pry, to the cur-
rent temperature (including the steady value) of the heat-transfer surface. Regardless of the wall material,
all the experimental data for different conditions of heat-transfer-~agent flow were in good agreement with
the ratios of the reduced heat-transfer coefficient.

For laminar flow in the absence of natural convection (as in the experiment) heat transfer normal to
the direction of motion is by heat conduction; then, neglecting the variation in the kinematic viscosity of the
liquid with increase in temperature of the heat-transfer surface, it follows that

Pr, _ a (6)

Pr¥ = —% ~
Pry a,

For turbulent flow (including transient conditions), there is additional heat transfer in this direction as a
result of pulsations (convection) and the pulsational transfer considerably exceeds the heat transfer by con-
duction. In this case, neglecting the variation in the thermal diffusivity of the liquid with increase in the
temperature of the heat-transfer surface, it follows that

Pr* — Pry ~ ¥ M
Pr, Vi

For water the thermal diffusivity increases with increase in temperature and hence, according to
Eq. (6), Pr* decreases in laminar flow; the kinematic viscosity decreases and, according to Eq. (7), Pr*
increase in transient conditions. In accordance with the variation in Pr*, the heat-transfer coefficient
also changes: increase in temperature of the heat-transfer surface leads to decrease in a in laminar flow
and to increase in o in transient conditions, in accordance with experimental results.

Note, in conclusion, that solving the conjugate problem in successive intervals on the basis of the
quasisteady approximation, taking into account the change in Pr*, leads to a description of convective heat
transfer and the identification of a number of laws determining the value of the heat-transfer coefficient.

NOTATION

x, coordinate, m; T, time, sec; t, temperature, °C; #, temperature head, °C; p, density, kg/m?; c,
specific heat, J/kg-°C; A,thermal conductivity, W/m -°C; v, kinematic viscosity, m?/sec; q, specific heat
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flux, W/m?; @, heat-transfer coefficient, W/m? - °C;w, velocity of heat-transfer-agent flow, m/sec; d,r, equivalent
diameter and radius of channel, m;! , length of heat-transfersection, m; R, determining dimension (thickness) of all,
m; Nu, Re, Pr, Fo, Nusselt, Reynolds, Prandtl, and Fourier numbers;L, initialtemperature. distribution function;
A, E, T, dimensionless functions; C, B, constants. Indices: f, w, fluid (liquid) and wall; 0, initial value;

1, 2, heat-transfer surfaces; k, i, calculational and current time intervals.
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ALGORITHM FOR CALCULATING TEMPERATURE
FIELDS IN THIN-WALLED STRUCTURAL ELEMENTS

V. 8. Khokhulin UDC 533.24.02

An algorithm for calculating temperature fields in thin-walled structural elements is
considered which is based on the concept of local one-dimensional schemes in conjunc-
tion with graphical solution of problems in heat conduction.

In investigating the thermal regime of various structures, one often encounters the problem of calculat-
ing temperature distribution in support elements having complex configuration as a rule. To calculate the
temperature distribution in these elements, the method of finite elements, which is based on a study of the
thermal balance in the elementary volumes into which an element is divided, is the method mainly used. Cal-
culation of the thermal balances in the selected volumes is a laborious and tedious problem for which the solu~
tion is of a specific nature in each case. :

An attempt was made [1] at universalization of the methods for computing multidimensional temperature
fields in structures. The method discussed in that paper finds application in the investigation of temperature
fields of various structures whose elements are of relatively simple configuration. In the case of individual
elements of nontrivial shape, it is still necessary to use the approach of [1] to calculate the temperature fields
in such elements and this complicates the problem. In order to construct relatively simple methods for in-
vestigating the thermal regime of individual elements, this paper considers an algorithm for calculating tem-~
perature fields in thin-walled structural elements of given configuration.

Figure 1 shows individual thin-walled structural elements in which the temperature can change both along
the z coordinate and within element sections for which the z coordinate is a normal because of the thermal ac-
tion of the environment or other factors.

Before writing down the mathematical formulation of the problem, we give some definitions. Let D be
the spatial region in which the distribution of the temperature T is sought. Dj €D is a subregion of the region
D in which the temperature distribution is described by the traditional, and two-dimensional in this case, equa~
tions of thermal conductivity. In each region D; we introduce an orthogonal coordinate system (z, xj), j =1,
2,...,N. Note that the z coordinate is common to all DJ- and the Xj are parallel to any section for which z is a
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